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Robust Transient Multi-Server Queues

and Feedforward Networks

Chaithanya Bandi* Dimitris Bertsimas† Nataly Youssef‡

We propose an analytically tractable approach for studying the transient behavior of multi-server queueing

systems and feedforward networks with deterministic routing. We model the queueing primitives via poly-

hedral uncertainty sets inspired by the limit laws of probability. These uncertainty sets are characterized

by parameters that control the degree of conservatism of the model. Assuming the inter arrival and service

times belong to such uncertainty sets, we obtain closed form expressions for the worst case transient system

time in multi-server queues and feedforward networks with deterministic routing. These analytic formulas

offer rich qualitative insights on the dependence of the system times as a function of fundamental quantities

in the queueing system. Moreover, we break new grounds and present an algorithm which appropriately

averages worst case values obtained at different degrees of conservatism. This methodology achieves signifi-

cant computational tractability and provides good approximations for the expected system time relative to

simulation.
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1. Introduction

The origin of queueing theory dates back to the beginning of the 20th century, when Erlang (1909)

published his fundamental paper on congestion in telephone traffic. Over the past century queueing

theory has found many other applications, particularly in service, manufacturing and transporta-

tion industries. In recent years, new queueing applications have emerged, such as data centers and

cloud computing, call centers and the Internet. These industries are experiencing surging growth

rates, with call centers and cloud computing enjoying respective annual growth of 20% and 38%,

according to the 2012 Gartner and Global Industry Analysts Survey.
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Most of the applications mentioned above are characterized by time varying arrival and service

patterns, and even if they have non time-varying such patterns, they experience substantially long

transient regimes, especially under heavy-traffic conditions, and may not reach steady state within

their operation time window. In addition, the arrival and service processes exhibit heavy-tailed

behavior, as reported by Leland et al. (1995) and Crovella (1997) for the Internet; by Barabasi

(2005) for call centers; and by Loboz (2012) and Benson et al. (2010) for data centers. In these

situations, steady state is never reached. As a result, in many significant applications, steady state

analysis is simply not relevant. Consequently, central research questions in this context are mainly

concerned with (a) the evolution of waiting times over time, and (b) the time it takes a queueing

system to reach steady state.

Despite the need for understanding of the transient behavior, the probabilistic analysis of tran-

sient queues is by and large analytically intractable. For M/M/1 queues, the exact analysis of

the queue length involves an infinite sum of Bessel functions and for M/M/m queues, Karlin and

McGregor (1958) obtained the transition probabilities of the Markov chain describing the queue

length as functions of Poisson-Charlier polynomials. Bailey (1954a,b) used double transforms with

respect to space and time to describe the transient behavior of an M/M/1 queue. This analysis was

further extended in a series of papers (see Abate and Whitt (1987a,b), Choudhury et al. (1994),

Choudhury and Whitt (1995), Abate and Whitt (1998)) to obtain additional insights on the queue

length process. These analyses also provide insights on the usefulness of reflected Brownian motion

approximations for queues. Bertsimas et al. (1991) formulate the problem of finding the distribu-

tion of the transient waiting time as a two-dimensional Lindley process and then transform it to

a Hilbert factorization problem. They obtain the solution for GI/R/I, R/G/I queues, where R

is the class of distributions with rational Laplace transforms. Extending these results, Bertsimas

and Nakazato (1992) use the “method of stages” to study MGEL/MGEM/1 queueing systems,

where MGE is the class of mixed generalized Erlang distributions which can approximate an arbi-

trary distribution. Massey (2002), Hampshire et al. (2006) study the transient analysis problem for
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process sharing markovian queues with time-varying rates using a technique known as “uniform

acceleration”.

As discussed in Odoni and Roth (1983), there are multiple approximations available but a

tractable theory of transient analysis of G/G/m queues is lacking (see also Gross and Harris (1974),

Heyman and Sobel (1982), and Keilson (1979)). Further complicating the transient analysis is the

effect of initial conditions, which gives rise to a significantly different behaviors as empirically inves-

tigated in Kelton and Law (1985) and Odoni and Roth (1983). Even numerically, the calculations

involve complicated integrals which do not allow sensitivity analysis, an integral requirement for a

system designer managing these systems.

Given these difficulties, a body of work has concentrated on developing approximate numerical

solution techniques to investigate transient behavior (e.g., Koopman (1972), Neuts (2004), Moore

(1975), Rider (1976), Grassmann (1977), Chang (1977), Kotiah (1978), Grassmann (1980), and

Rothkopf and Oren (1979)). Newell (1971), in his work on the diffusion approximation of GI/G/1

queueing systems under heavy traffic, obtains a closed-form expression and proposes an order of

magnitude estimate of the time required for the transient effects to become negligible. Mori (1976),

develops a numerical technique for estimating the transient behavior of the expected waiting time

for M/M/1 and M/D/1 queueing systems on the basis of a recursive relationship involving waiting

times of successive jobs. All of these approaches have focused on improving the efficiency and

accuracy of numerical solution techniques, rather than on using their results to draw conclusions

on general attributes of transient behavior. More recently, based on earlier work by Bertsimas

and Natarajan (2007), Osogami and Raymond (2013) use a semi-definite optimization approach to

obtain qualitative insights on the transient behavior of queues. They derive upper bounds on the

tail distribution of the transient waiting time, and use it to bound the expected waiting time, for

GI/GI/1 queues starting with empty buffer for non-heavy-tailed distributions. Xie et al. (2011)

use an extension of the Stochastic Network Calculus framework to propose a temporal network

calculus approach to obtain bounds on delays in internet networks. However, these approaches do

not tackle heavy-tailed queues and the effect of initial buffer conditions.
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Contributions

Motivated by these challenges, we propose an analytically tractable approach for studying the

transient behavior of multi-server queueing systems with heavy-tailed arrival and service processes.

Building upon our earlier work in Bandi et al. (2012) for queues in steady state, we first model

the queueing primitives via polyhedral uncertainty sets indexed by two parameters which control

the degree of conservatism of the corresponding arrival and service processes. We then consider a

robust optimization perspective which yields closed form formulas for the transient system time.

These expressions offer new qualitative insights on the dependence of the system time as a function

of fundamental quantities in the queueing system. We then carry out an average case analysis

and break new ground by treating the parameters characterizing the uncertainty sets as random

variables and approximate the expected system time via averaging the worst case values. This

averaging approach achieves significant tractability by reducing the problem of transient analysis to

a two dimensional integral. Our framework combines qualitative insights via closed form expressions

and produces accurate predictions of transient system times relative to simulation for heavy traffic

queues with various interarrival and service time distributions, heavy tail coefficients and number

of servers. Furthermore, our approach is generalizable to networks of queues in series (tandem

queues) and feedforward networks with deterministic routing.

The motivation behind our idea stems from the rich development of optimization as a scientific

field during the second part of the 20th century. From its early years (Dantzig (1949)), modern opti-

mization has had the objective to solve multi-dimensional problems efficiently from a practical point

of view. Today, many commercial codes are available which can solve truly large scale structured

(linear, mixed integer and quadratic) optimization problems. In particular, Robust Optimization

(RO), arguably one of the fastest growing areas in optimization in the last decade, provides, in our

opinion, a natural modeling framework for stochastic systems. For a review of robust optimization,

we refer the reader to Ben-Tal et al. (2009), and Bertsimas et al. (2011a). The present paper is

part of a broader investigation to analyze stochastic systems such as market design, information

theory, finance, and other areas via robust optimization (see Bandi and Bertsimas (2013)).
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The structure of the paper is as follows. In Section 2, we present our uncertainty set modeling

assumptions and motivate their construction via the probabilistic limit laws. In Section 3, present

our worst case as well as average case analysis for single multi-server queues. In Section 4, we

extend our approach to a tandem system of queues. In Section 5, we discuss the advantages of our

approach in obtaining insights and being computationally tractable. In Section 6, we extend the

approach to analyze feed-forward networks with deterministic routing. Section 7 concludes the

paper.

2. Proposed Framework

In the traditional probabilistic study of queues, the interarrival times T = {T1, . . . ,Tn} and service

times X = {X1, . . . ,Xn} are modeled as renewal processes. In a first-come first-serve (FCFS) single-

server queue, the system time is defined by Lindley (1952) as

Sn =max(Sn−1 (T,X)+Xn −Tn,Xn) = max
1≤k≤n

(
n

∑
i=k
Xi −

n

∑
i=k+1

Ti) . (1)

In the event where the queue starts its operation with n0 ≥ 0 initial jobs (for which T1, . . . ,Tn0 = 0),

the system time recursion becomes

Sn = max

⎧⎪⎪⎨⎪⎪⎩
max

1≤k≤n0

n

∑
i=k
Xi −

n

∑
i=n0+1

Ti, max
n0+1≤k≤n

(
n

∑
i=k
Xi −

n

∑
i=k+1

Ti)
⎫⎪⎪⎬⎪⎪⎭

= max

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

Xi −
n

∑
i=n0+1

Ti, max
n0+1≤k≤n

(
n

∑
i=k
Xi −

n

∑
i=k+1

Ti)
⎫⎪⎪⎬⎪⎪⎭
. (2)

Analyzing the system time entails the understanding of the complex relationships between the

random variables associated with the interarrival and service times. The high dimensional nature

of the performance analysis problem makes the probabilistic analysis by and large intractable,

especially in the transient domain. The study of multi-server queues is even more challenging.

In this section, we propose to extend the framework introduced in Bandi et al. (2012) by modeling

the uncertainty in the arrival and service processes via parameterized polyhedral sets, rather than

assuming probability distributions. This framework substantially reduces the dimensionality of



Author: Robust Transient Multi-Server Queues and Feedforward Networks

6 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

the uncertainty, which results in closed-form expressions of the worst-case behavior of queueing

systems. Furthermore, we break new grounds by taking advantage of the uncertainty dimensionality

reduction and obtain analytical expressions describing the average-case system behavior.

2.1. Uncertainty Modeling

In this paper, we consider the framework proposed by Bandi et al. (2012). In particular, we

construct polyhedral uncertainty sets inspired by the generalized Central Limit Theorem (CLT)

reproduced below in Theorem 1.

Theorem 1. Generalized CLT (Samorodnitsky and Taqqu (1994))

Let {Y1,Y2, . . .} be a sequence of independent and identically distributed random variables, with

mean µ and undefined variance. Then, the normalized sum

n

∑
i=1

Yi −nµ

Cαn1/α ∼Y, (3)

where Y is a stable distribution with a tail coefficient α ∈ (1,2] and Cα is a normalizing constant.

As in Bandi et al. (2012), we constrain the quantities Ti and Xi to take values while satisfying

n

∑
i=k+1

Ti −
n−k
λ

(n−k)1/αa
≥−Γa, and

n

∑
i=k
Xi −

n−k+1

µ

(n−k+1)1/αs
≤Γs, ∀k = 1, . . . ,n,

for some parameters Γa and Γs that we use to control the degree of conservatism. Note that Γa

and Γs are used to constrain the normalized partial sums for all values that the index k can take

on. Motivated by the expression of the system time in initially nonempty queues, we propose to

constrain the total sums in Eq. (2) by

n

∑
i=n0+1

Ti −
n−n0

λ

(n−n0)1/αa
≥−γa and

n

∑
i=1

Xi −
n

µ

n1/αs
≤ γs,

for some parameters γa and γs. Note that, for γa < Γa and γs < Γs, the above inequalities allow a

tighter bound on performance measures in the case of initially nonempty queues. Consequently, we

make the following modeling assumptions.
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Assumption 1. We make the following assumptions on the interarrival and service times.

(a) The interarrival times (Tn0+1, . . . ,Tn) belong to the parametrized uncertainty set

Ua =Ua (γa,Γa) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Tn0+1, . . . ,Tn)

RRRRRRRRRRRRRRRRRRRRRRRRR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
i=n0+1

Ti −
n−n0

λ
≥ −γa(n−n0)1/αa

n

∑
i=k+1

Ti −
n−k
λ

≥ −Γa(n−k)1/αa , ∀ n0 ≤ k ≤n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where 1/λ is the expected interarrival time, n0 is the initial buffer in the queue, γa,Γa ∈R are

parameters that control the degree of conservatism, and 1 <αa ≤ 2 models possibly heavy-tailed

probability distributions.

(b) For a single-server queue, the service times (X1, . . . ,Xn) belong to the uncertainty set

Us =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X1, . . . ,Xn)

RRRRRRRRRRRRRRRRRRRRRRRRR

n

∑
i=1

Xi −
n

µ
≤ γsn1/αs

k

∑
i=j+1

Xi −
k− j
µ

≤ Γs (k− j)1/αs , ∀ 0 ≤ j ≤ k ≤n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where 1/µ is the expected service time, γs,Γs ∈ R are parameters that control the degree of

conservatism, and 1 <αs ≤ 2 models possibly heavy-tailed probability distributions.

(c) For an m-server queue, m ≥ 2, we let ν be a non-negative integer such that ν = ⌊n/m⌋, where

n is the index corresponding to the nth arriving job. We partition the job indices into sets

Ki = {k ≤n ∶ ⌊k/m⌋ = i}, for i = 0,1, . . . , ν, i.e.,

K0 = {1, . . . ,m} ,K1 = {m+1, . . . ,2m} , . . . ,Kν = {νm+1, . . . ,n} .

Let ki ∈Ki denote the index that selects a job from set Ji, for i = 0, . . . , ν. The service times

for a multi-server queue belong to the parameterized uncertainty set

Um =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X1, . . . ,Xn)

RRRRRRRRRRRRRRRRRRRRRRRR

ν

∑
i=0

Xki −
ν +1

µ
≤ γm (ν +1)1/αs , ∀ ki ∈Ki

∑
i∈I
Xki −

∣I ∣
µ

≤ Γm ∣I ∣1/αs , ∀ ki ∈Ki, and i ∈ I ⊆ {0, . . . , ν} ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Remark: Note that the uncertainty sets that we consider in this paper are subsets of the ones

introduced in Bandi et al. (2012). Furthermore, we allow (γa,Γa), (γa,Γs) and (γm,Γm) to take
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both positive and negative values. When these parameters are positive, our uncertainty set allows

the sums of inter arrival times to take values below the mean and the sums of service times to take

values exceeding the mean, which yields positive waiting times. On the other hand, when these

parameters are negative, our uncertainty set constrains the sums of the inter arrival times to take

values exceeding the mean and the sum of the service times to take values below the mean, in

which case, the system yields zero waiting time.

2.2. Performance Analysis Metrics

To understand the performance of queueing systems, we seek in particular an analytical character-

ization of the expected system time, given by

Sn =ET,X [Sn (T,X)] . (4)

The above expression is challenging to compute by modeling the primitives in a probabilistic

queue via stochastic processes, due to the high dimensionality of the uncertainty and the complex

relationships between the random variables associated with the interarrival and service times. Using

our uncertainty modeling framework, we obtain an approximation of the expected system time

by (a) computing the worst case value assuming the primitives satisfy Assumption 1, then (b)

averaging the results with respect to the parameters (γa,Γa), (γs,Γs), and (γm,Γm). We present

next the details of our approach.

Worst Case Behavior

To characterize the worst case behavior, we formulate the related performance analysis question

as a robust optimization problem. In particular, we seek the worst case system time Ŝn in queues

satisfying Assumption 1. The worst case analysis can be cast as optimization problems of the form

Ŝn (T) = max
X∈Um

Sn and Ŝn =max
T∈Ua

Ŝn (T) , (5)

which give rise to a closed form characterization of the worst case system time. To illustrate,

Theorem 2 presents the result for an initially empty single-server queue with light tailed primitives.
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Theorem 2. (Worst Case System Time in an Initially Empty Single-Server Queue)

In a single-server FCFS queue with n0 = 0, T ∈ Ua, X ∈ Us, αa = αs = 2 and ρ < 1, the worst case

system time for the nth job is given by

Ŝn ≤max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Γa +Γs)
√
n− 1−ρ

λ
n+( 1

µ
+Γs), if n <

λ2 [(Γa +Γs)
+]2

4(1−ρ)2

λ

4
⋅
[(Γa +Γs)

+]2

1−ρ
+( 1

µ
+Γs) , otherwise,

(6)

where the notation (a)+ =max(0, a).

The evolution of the worst case system time is characterized by two distinct states: (a) a transient

state where the system time is dependent on n with the system time in an initially empty queue

increasing at an order of n1/α when Γa +Γs > 0; and (b) a steady state where the system time is

independent of n. When Γa + Γs < 0, jobs do not experience any waiting time, and therefore the

system time is equal to the service time.

The characterization of the worst case waiting time bears qualitative similarity to the bounds

established by Osogami and Raymond (2013) and Kingman (1970) for the transient and steady

state system time in a GI/GI/1 queue, respectively,

E [Sn] ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e

2

√
σ2
a +σ2

s

√
n+ 1

µ
, if n < λ

2(σ2
a +σ2

s)
e2(1−ρ)2

,

λ

2

(σ2
a +σ2

s)
1−ρ

+ 1

µ
, otherwise,

where e = exp(1) = 2.718.

Sections 3 and 4 present extensions of Theorem 2 to the cases of initially nonempty multi-server

single and tandem queues with heavy-tailed arrivals and services. We next discuss how we leverage

the worst case expressions that we obtain to predict the average system behavior.

Average Case Behavior

Instead of taking the expectation of the system time over the random variables T and X to analyze

the average case behavior, we propose to treat the parameters (γa,Γa), (γs,Γs) and (γm,Γm) as

random variables and compute

S̃n =E [Ŝn] . (7)

dbertsim
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Philosophically, this approach distills all the probabilistic information contained in the random

variables Xi’s and Ti’s into the the parameters {(γa,Γa) ,(γs,Γs)} by allowing them to behave as

random variables. Capturing the “randomness” of the arrival and service stochastic processes via

only few random variables allows a significant dimensionality reduction of the uncertainty.

This framework therefore yields a tractable analysis of the expected transient waiting time

by reducing the problem to solving a low-dimensional integral. To illustrate the averaging idea,

consider again the case of an initially empty single-server queue with light tailed primitives. We

express the bound on the worst case system time Ŝn in Eq. (6) as

Ŝtn (Γa,Γs) ⋅1 tn (Γa,Γs)+ Ŝs (Γa,Γs) ⋅1sn (Γa,Γs) , (8)

where the indicator functions 1tn and 1
s
n reflect the condition for the system to be in the transient

state and the steady state, respectively. By treating Γa and Γs as random variables, we compute

the expected value of the expression in Eq. (8) to obtain S̃n. This computation involves a double

integration, which can be solved efficiently using numerical integration techniques.

With a careful choice of the distributions of the parameters {(γa,Γa) ,(γs,Γs)}, we show in

Sections 3.2 and 4.2 that this averaging approach provides numerical outputs which match the

simulated values accurately with most errors below 10%.

3. Analysis of a Single Queue

In this section, we study the worst case and average behavior of a single queue with a FCFS

scheduling policy and a traffic intensity ρ = λ/(mµ) < 1, where m denotes the number of servers.

We also assume that the queue begins operation with a job buffer n0 ≥ 0.

3.1. Worst Case Behavior

We study the system time using the worst case approach as proposed in Bandi et al. (2012). We

consider an m-server queueing system with n0 initial jobs. Let Cn denote the completion time of

the nth job, i.e., the time the nth job leaves the system (including service), and C(n) denote the time

dbertsim
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of the nth departure from the system. In general, the following recursions describe the dynamics

in a multi-server queue (Krivulin (1994))

Cn =max(An,C(n−m))+Xn and Sn =Cn −An =max(C(n−m) −An,0)+Xn, (9)

where An =∑n
i=1Ti denotes the the time of arrival of the nth job.

It is well known that the central difficulty in analyzing multi-server queues lies in the fact that

overtaking may occur, i.e., the nth departure may not correspond to the nth job arriving to the

queue. However, as noted in Bandi et al. (2012), taking a worst case approach allows us to overcome

the challenges of multi-server queue dynamics and obtain an exact characterization of the worst

case waiting time for the nth job, for any T. In particular, Bandi et al. (2012) consider the case

of uncertainty sets where γs ≥Γs ≥ 0 and show that the worst case system time is equal to the one

achieved in a queue where no overtaking is allowed, i.e., where jobs leave the queue in the same

order of their arrival, yielding

Ŝn (T) = max
0≤k≤ν

⎛
⎝

max
Um

ν

∑
i=k
Xr(i) −

n

∑
i=r(k)+1

Ti
⎞
⎠
, (10)

where r(i) =n−(ν − i)m ∈Ki, for all T. We extend this result to the case where γm ≤Γm and Γm ≥ 0

and obtain Proposition 1, and the proof is presented in Appendix A3.

Proposition 1. Given a sequence of inter-arrival times T = {T1, . . . ,Tn}, the worst case system

time Ŝn (T) in an FCFS queue modeled by Ua (γa,Γa) , Um (γm,Γm), where Γm ≥ 0, is such that

Ŝn (T) = max
0≤k≤ν

⎛
⎝

max
Usm

ν

∑
i=k
Xr(i) −

n

∑
i=r(k)+1

Ti
⎞
⎠
, (11)

where r(i) =n− (ν − i)m.

To handle the case of Γm < 0, we propose an upper bound on the worst case system time. We let

Γ+
m =max(0,Γm), and since Um (Γm) ⊆Um (Γ+

m),

Ŝn (T) = max
Um(Γm)

Sn (T,X) ≤ max
Um(Γ+m)

Sn (T,X) = max
0≤k≤ν

⎛
⎝

max
Um(Γ+m)

ν

∑
i=k
Xr(i) −

n

∑
i=r(k)+1

Ti
⎞
⎠
. (12)
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Initially Empty Queues

We apply Assumption 1 and the fact that γm ≤Γm, to translate Eqs. (11) and (12) into solving the

following one-dimensional nonlinear optimization problem

Ŝn ≤ max
0≤k≤ν

{ν −k+1

µ
+Γ+

m (ν −k+1)1/αs −m(ν −k)
λ

+Γa [m(ν −k)]1/αa} . (13)

This bound can be solved efficiently for the general case where αs ≠αa. Theorem 3 provides a closed

form expression for the upper bound on the worst case system time in an initially empty queue for

the special case where αa =αs =α.

Theorem 3. (Highest System Time in an Initially Empty Multi-Server Queue)

In an initially empty m-server FCFS queue where T ∈ Ua, X ∈ Um where Γ =m1/αΓa + Γ+
m > 0,

αa =αs =α and ρ < 1, the worst-case system time for all n ∈Kν is given by

Ŝn ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Γ ⋅ν1/α −m(1−ρ)
λ

⋅ν +( 1

µ
+Γ+

m), if ν < ( λΓ/m
α(1−ρ)

)
α/(α−1)

α−1

αα/(α−1) ⋅
λ1/(α−1) ⋅Γα/(α−1)

[m(1−ρ)]1/(α−1) , otherwise.

(14)

Proof of Theorem 3. Since (ν −k+1)1/αs ≤ (ν −k)1/αs +1, and given Γ+
m ≥ 0, we bound Eq. (13) by

Ŝn (Γa,Γm) ≤ max
0≤k≤ν

{ν −k
µ

+Γ+
m (ν −k)1/αs −m(ν −k)

λ
+Γa [m(ν −k)]1/αa}+( 1

µ
+Γ+

m) ,

which follows from the fact that (ν −k+1)1/αs ≤ (ν −k)1/αs + 1. By making the transformation

x = ν −k, where x ∈N, we can represent this maximization problem as

max
0≤x≤ν,x∈N

(β ⋅x1/α − δ ⋅x) ≤ max
0≤x≤ν,x∈R

(β ⋅x1/α − δ ⋅x) , (15)

where β =m1/αΓa+Γ+
m and δ =m(1−ρ)/λ > 0, given ρ < 1. If β ≤ 0, the function h(x) = β ⋅x1/α−δ ⋅x ≤ 0

for all values of x, implying Ŝn = 1/µ + Γ+
m. For β > 0, the function h is concave in x with an

unconstrained maximizer

x∗ = ( β
αδ

)
α/(α−1)

= (λ(Γm +m
1/αΓa)

αm(1−ρ)
)
α/(α−1)

. (16)
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Maximizing the function h(⋅) over the interval [0, ν] involves a constrained one-dimensional concave

maximization problem whose solution gives rise to closed-form solutions.

(a) If x∗ ∈ [0, ν], then x∗ is the maximizer of the function h over the interval [0, ν], leading to an

expression that is independent of ν,

Ŝn ≤ β ( β
αδ

)
1/(α−1)

− δ ( β
αδ

)
α/(α−1)

+( 1

µ
+Γ+

m) = α−1

αα/(α−1) ⋅
βα/(α−1)

δ1/(α−1) +( 1

µ
+Γ+

m) . (17)

(b) If x∗ > ν, the function h is non-decreasing over the interval [0, ν], with h(ν) ≥ h(x) for all

x ∈ [0, ν], leading to an expression that is dependent on ν,

Ŝn = β(ν)1/α − δ(ν)+( 1

µ
+Γ+

m) . (18)

We obtain Eq. (14) by substituting β and δ by their expressions in parts (a) and (b). ◻

Note that, for the case where Γ =m1/αΓa+Γ+
m ≤ 0, the function in Eq. (14) is increasing in k over

the interval k ∈ [0, ν], for ρ =λ/µ < 1. It is therefore maximized at k = ν, which yields

Ŝn = X̂n ≤
1

µ
+Γ+

m.

In this case, the nth job does not experience a waiting time before entering service. This is due to

the fact that the condition Γ ≤ 0 involves typically long inter arrival times and short service times.

Initially Nonempty Queues

We next analyze the case where n0 > 0 with Ti = 0 for all i = 1, . . . ,n0. The first m jobs in the queue

are routed immediately to the servers without any delays. We are interested in the behavior for

n >m. For Γm ≥ 0 and assuming n0 ∈Kφ, i.e., φ = ⌊n0/m⌋, we can rewrite Eq. (11) as

(a) for n ≤n0 ∶ Ŝn = max
X∈Um

( max
0≤k≤ν≤φ

ν

∑
i=k
Xr(i)) = max

X∈Um
(
ν

∑
i=0

Xr(i)) (19)

(b) for n >n0 ∶ Ŝn = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
0≤k≤φ

(max
X∈Um

ν

∑
i=k
Xr(i)) −max

T∈Ua

n

∑
i=n0+1

Ti,

max
φ<k≤ν

⎛
⎝

max
X∈Um

ν

∑
i=k
Xr(i) −max

T∈Ua

n

∑
i=r(k)+1

Ti
⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (20)
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Similarly to the empty case, the worst case system time involves one-dimensional nonlinear opti-

mization problems which can be solved efficiently. In particular, for n ≤n0, we have

Ŝn (Γm) = max
X∈Um

(
ν

∑
i=0

Xr(i)) = (ν +1

µ
+γm(ν +1)1/αs)

+

, (21)

where r = r(0) =n−νm and ν = ⌊n/m⌋. For n >n0, we have

Ŝn (Γa,Γm) ≤ max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(ν −k+1

µ
+γm (ν −k+1)1/αs)

+

− n−n0

λ
+γa (n−n0)

1/αa ,

max
φ<k≤ν

(ν −k+1

µ
+Γ+

m (ν −k+1)1/αs −m(ν −k)
λ

+Γa [m(ν −k)]1/αa)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (22)

As for initially empty queues, the optimization problem in Eq. (22) can be solved efficiently for

the general case where αa ≠αs. Theorem 4 provides a closed form expression for the upper bound

on the worst case system time for the special case where αa =αs =α.

Theorem 4. (Highest System Time in an Initially Nonempty Multi-Server Queue)

In an m-server FCFS queue with n0 ∈Kφ and T ∈Ua, X ∈Um such that Γ =m1/α+Γ+
m > 0, αa =αs =α

and ρ < 1, the worst case system time for n0 <n ∈Kν is given by

Ŝn ≤max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ν +1

µ
+γm (ν +1)1/αs)

+

− n−n0

λ
+γa (n−n0)

1/αa ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(ν −φ)1/α −m(1−ρ)
λ

(ν −φ)+( 1

µ
+Γ+

m), if ν −φ < ( λΓ/m
α(1−ρ)

)
α/(α−1)

α−1

αα/(α−1)

λ1/(α−1) ⋅Γα/(α−1)

[m(1−ρ)]1/(α−1) +( 1

µ
+Γ+

m) , otherwise.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (23)

Proof of Theorem 4. To solve bound the maximization problem in Eq. (22), we take a similar

approach to that presented in the proof of Theorem 3 and cast the problem in the form

max
0≤x≤ν−φ,x∈R

(β ⋅x1/α − δ ⋅x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β ⋅ (ν −φ)1/α − δ ⋅ (ν −φ), if ν −φ ≤ ( β

αδ
)α/(α−1)

α−1

αα/(α−1) ⋅
βα/(α−1)

δ1/(α−1) , otherwise,

where β =m1/αΓa+Γ+
m and δ =m(1−ρ)/λ. Substituting the terms β and φ by their respective values

in the above expression yields the desired result. ◻
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Note that, for the case where Γ =m1/αΓa +Γ+
m ≤ 0, the worst case system time

Ŝn (Γ) ≤max{(ν +1

µ
+γm (ν +1)1/αs)

+

− n−n0

λ
+γa (n−n0)

1/αa ,
1

µ
+Γ+

m} .

In this case, the nth job experiences a waiting time only due to the buildup effect left by the initial

jobs. For big enough n, this effect becomes negligible and the system time eventually becomes

equal to the service times, stabilizing at the value 1/µ+Γ+
m.

3.2. Average Case Behavior

To analyze the average behavior of a queueing system, we treat the parameters (γa,Γa) and

(γm,Γm) as random variables and compute the expected value of the worst case system time Ŝn.

For ease of notation, we express the worst case system time in Eq. (23) as

Ŝn ≤max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ŝ bn (γa, γs) ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ŝ tn (Γa,Γm) , if ⌊ n
m

⌋− ⌊n0

m
⌋ <

⎡⎢⎢⎢⎢⎣

λ(m1/αΓa +Γ+
s)

+

αm(1−ρ)

⎤⎥⎥⎥⎥⎦

α/(α−1)

Ŝs (Γa,Γm) , otherwise

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (24)

where Ŝ bn, Ŝ tn, and Ŝs denote the quantities associated with the system time effected by the initial

buffer n0, the transient state and the steady state, respectively. We would like to rewrite the above

upper bound on the worst case system time as

max{Ŝ bn (γa, γs) , Ŝtn (Γa,Γm) ⋅1 tn (Γa,Γm)+ Ŝs (Γa,Γm) ⋅1sn (Γa,Γm)},

where the indicator functions 1tn and 1
s
n reflect the condition for the system to be in the transient

state and the steady state, respectively. Specifically, by writing the condition in Eq. (24) as an

interval over Γa and Γm, we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
t
n (Γa,Γm) = 1 if m1/αΓa +Γ+

m > αm(1−ρ)
λ

⋅(⌊ n
m

⌋− ⌊n0

m
⌋)
(α−1)/α

1
s
n (Γa,Γm) = 1 otherwise.

By positing some assumptions on the distributions of the parameters (γa,Γa) and (γm,Γm), we

compute Ŝn via numerical integration. We next discuss our choice of the distributions of the

parameters {(γa,Γa) ,(γs,Γs)} inspired by the limit laws of probability.
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Choice of Variability Distribution

From Assumption 1, the parameters γa and γs can be viewed as normalized sums of the random

variables {Tn0+1, . . . ,Tn} and {X1, . . . ,Xn}. Specifically,

γa =−

⎛
⎜⎜⎜⎜
⎝

n

∑
i=n0+1

Ti −
n−n0

λ

(n−n0)
1/α

⎞
⎟⎟⎟⎟
⎠

∝−Za and γs =

⎛
⎜⎜⎜⎜
⎝

n

∑
i=1

Xi −
n

µ

n1/α

⎞
⎟⎟⎟⎟
⎠

∝Zs, (25)

which approximately behave as a random variable following a limiting distribution. In a multi-

server queue, and assuming without loss of generality that n = νm, we obtain

γs =

(ν+1)m

∑
i=1

Xi −
νm

µ

[νm]1/α = 1

m1/α ⋅
m

∑
j=1

⎛
⎜⎜⎜⎜
⎝

ν

∑
i=0

Xj+im −
ν +1

µ

(ν +1)1/α

⎞
⎟⎟⎟⎟
⎠

≤ 1

m1/α ⋅
m

∑
j=1

γm,

where the last inequality is due to Assumption 1(c). We can therefore express γm as

γm = 1

m(α−1)/α ⋅γs.

(a) Light-Tailed Primitives: For light tails, γa and γs obey the normal distribution, i.e.,

γa ∼N (0,σa) and γs ∼N (0,σs) ,

where σa and σs denote the standard deviations associated with the inter-arrival and service

processes, respectively.

(b) Heavy-Tailed Primitives: By Theorem 1, the normalized sum of heavy-tailed random vari-

ables with tail coefficient α follows a stable distribution Sα (ψ,ξ,φ) with a skewness parameter

ψ = 1, a scale parameter ξ = 1 and a location parameter φ = 0. Therefore, γa and γs as expressed

in Eq. (25) are such that

γa ∼Sα (−1,Cα,0) and γs ∼Sα (1,Cα,0) ,

where Cα is a normalizing constant as introduced in Eq. (3). As a concrete example, for Pareto

distributed inter arrivals and service times,

Cα = [Γ(1−α)cos(πα/2)]1/α
,
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where Γ(⋅) denotes the Gamma function. Note that, unlike the case of light tails, the distri-

butions of γa and γs are asymmetrical. More specifically, the skewness of γa is negative since

γa =−Za, where Za =Sα (1,Cα,0).

The characterization of the exact distribution of the parameters (Γa,Γs,Γm) is however challenging.

Instead, we propose a simplification where we express Γa, Γs and Γm as linear functions of γa, γs

and γm, respectively. Specifically, we let

Γa = θaγa, Γs = θsγs, and Γm = θmγm,

where (θa, θs, θm) are some scalars which we select as follows.

(a) Light-Tailed Primitives: We choose (θa, θs, θm) are scalars chosen so that the average worst

case steady-state system time matches the bound provided by Kingman (1970), which is par-

ticularly tight in heavy traffic. In other words, we ensure that S̃n =Sn for a large enough value

of n. To illustrate, for a multi-server queue, we ensure that

λ

4(1−ρ)
⋅E[[(θaγa + θmγ+m/m1/2)

+
]

2

] = λ

2(1−ρ)
⋅ (σ2

a +σ2
s/m2). (26)

Let γ = θaγa + θmγ+m/m1/2 = θaγa + θmγ+s /m. We approximate the expectation in Eq. (26) by

E[(γ+)2] ≈P(γ ≥ 0) ⋅E [γ2] =P(γ ≥ 0) ⋅ (θ2
aσ

2
a +P(γs ≥ 0) ⋅ θ2

mσ
2
s/m2)

By pattern matching the two expressions in Eq. (26), the parameters θa and θm are such that

θa ≈ ( 2

P(γ ≥ 0)
)

1/2

and θm ≈ ( 2

P(γ ≥ 0) ⋅P(γs ≥ 0)
)

1/2

. (27)

Note that, given that γs is a normally distributed distributed random variable centered around

the origin, we have P(γs ≥ 0) = 1/2. Also, P(γ ≥ 0) can be efficiently computed numerically, with

P(γ ≥ 0) =P(θaγa + θmγ+s /m ≥ 0) =P(γa +21/2 ⋅γ+s /m ≥ 0) .

(b) The steady state in heavy-tailed queues does not exist, which does not allow us to use a

similar matching procedure to the one introduced for light-tailed queues. Instead, we propose

to extend the formulas in Eq. (27) to obtain

θa ≈ ( α

P(γ ≥ 0)
)
(α−1)/α

and θm ≈ ( α

P(γ ≥ 0) ⋅P(γs ≥ 0)
)
(α−1)/α

. (28)
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where the probabilities can be efficiently computed numerically. Specifically,

P(γ ≥ 0) =P(θaγa + θmγ+s /m ≥ 0) =P(γa +P(γs ≥ 0)−(α−1)/α ⋅γ+s /m ≥ 0) .

We note that, by expressing Γa and Γm in terms of γa and γs, the average system time S̃n can be

computed by taking expectations with respect to γa and γs

S̃n =Eγa,γs [max{Ŝ bn (γa, γs) , Ŝtn (γa, γs) ⋅1 tn (γa, γs)+ Ŝs (γa, γs) ⋅1sn (γa, γs)}] .

The above double integral can be efficiently computed using numerical techniques. We next compare

the performance of the proposed averaging technique with simulated values.

Computational Results

We investigate the performance of our approach relative to simulation and examine the effect of

the system’s parameters (traffic intensity, tail coefficient, initial buffer and number of servers) on

its accuracy. Specifically, we run simulations for single and multi-server queues with normally and

Pareto distributed inter arrival and service times.

We present the average percent error between simulated expected values Sn and the predictions

S̃n. In particular, we report the following quantity

Average Percent Error = 1

N −1
⋅
N

∑
n=2

∣Sn − S̃n
Sn

∣×100%.

The term N corresponds to either the number of jobs observed until relaxation is reached (observed

from simulations) or the maximum number of jobs for which the simulations was run (N = 5,000 for

both light-tailed and heavy-tailed distributions). Tables 1 and 2 report the errors for multi-server

queues with normally and Pareto distributed inter arrival and service times, respectively.

Figure 1 compares our approximation (dotted line) with simulation (solid line) for queues with

normally distributed inter arrival and service times with m = 1 (top panels) and m = 20 (bottom

panels). Figure 2 presents a graphical snapshot of our approximation (dotted line) in comparison

to simulation (solid line) for queues with Pareto distributed primitives with m = 1 (top panels) and

m = 20 (bottom panels).
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Table 1 Errors relative to simulations for multi-server queues with normally distributed primitives.

1 Server 10 Servers 20 Servers

ρ n0 = 0 n0 = 5 n0 = 20 n0 = 0 n0 = 20 n0 = 50 n0 = 0 n0 = 50 n0 = 100

σ
a
=
σ
s
=

2.
5

0.95 5.25 3.51 5.46 0.90 3.09 2.21 0.92 1.51 1.07

0.96 5.22 3.28 6.85 0.60 2.45 2.11 0.75 1.53 1.03

0.97 4.02 2.26 5.29 0.43 2.83 2.28 0.60 1.92 1.10

0.98 3.51 1.95 7.09 0.76 3.38 3.73 0.34 2.57 1.65

0.99 3.54 1.54 8.77 1.90 4.90 2.73 0.98 2.89 0.62

σ
a
=
σ
s
=

4
.0

0.95 1.81 3.52 8.91 0.75 3.78 3.52 1.20 2.21 1.97

0.96 2.32 4.40 9.41 1.07 3.92 4.32 0.95 2.44 2.50

0.97 1.75 2.16 9.74 1.14 4.36 5.34 0.62 2.73 3.42

0.98 3.69 5.13 7.25 3.31 6.90 8.94 0.89 4.00 2.52

0.99 5.05 4.09 8.51 4.47 7.74 5.09 2.83 5.08 1.50
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Figure 1 Simulated (solid line) versus predicted values (dotted line) for a single queue with normally

distributed primitives (σa = σs = 4.0) and ρ = 0.97. Panels (a)–(c) correspond to an instance with

m = 1 and n0 = 0,5,10. Panels (d)–(f) correspond to an instance with ρ = 0.99 and n0 = 0,50,100.
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Table 2 Errors relative to simulations for multi-server queues with Pareto distributed primitives.

1 Server 10 Servers 20 Servers

ρ n0 = 0 n0 = 50 n0 = 200 n0 = 0 n0 = 50 n0 = 200 n0 = 0 n0 = 50 n0 = 200

α
a
=
α
s
=

1.
6

0.95 9.59 7.18 1.78 12.5 9.49 13.9 17.9 15.9 25.5

0.96 6.39 2.62 5.36 12.4 9.52 13.1 18.5 16.5 27.3

0.97 4.86 1.49 5.98 12.1 9.56 13.7 19.6 17.8 28.6

0.98 3.39 1.13 6.40 11.7 10.0 14.9 21.8 19.9 29.2

0.99 2.59 2.08 6.63 11.9 11.9 15.6 24.5 22.6 29.3

α
a
=
α
s
=

1.
7

0.95 9.59 7.18 1.78 9.22 7.85 5.44 21.6 18.5 17.4

0.96 10.4 4.69 2.24 12.4 9.04 9.68 21.3 17.6 18.5

0.97 8.75 3.14 2.92 12.7 9.63 9.76 21.7 17.7 19.8

0.98 7.18 1.94 3.39 13.0 11.2 10.8 22.8 18.7 20.4

0.99 5.72 1.17 3.66 13.9 13.5 11.4 24.4 20.3 20.4
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Figure 2 Simulated (solid line) versus predicted values (dotted line) for a single queue with Pareto dis-

tributed primitives (αa = αs = 1.6) and ρ = 0.97. Panels (a)–(c) correspond to an instance with

m = 1 and n0 = 0,50,200. Panels (d)–(f) correspond to an instance with m = 20 and n0 = 0,50,200.
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Our approach generally yields errors within 10% for multi-server queues with normally dis-

tributed inter arrival and service times. Errors for heavy-tailed multi-server queues seem to increase

with the number of servers, with magnitudes within 15% for 10-server queues and 30% for 20-server

queues. However, we still capture the general behavior of the system time as shown in Figure 2.

Furthermore, as shown by simulations and empirical studies performed by Odoni and Roth (1983)

on light-tailed queueing systems, the expected transient system time has broadly four different

behaviors depending on the initial jobs. Our averaging approach is capable of capturing these

behaviors.

(a) The first behavior occurs when the system is initially empty. The average system time function

is monotonic and concave in n. This behavior is detected in Figures 1(a),(d).

(b) The second behavior occurs when the number of initial jobs is small creating an initial system

time S̃n0 that is below the steady state value. The system time in this case initially decreases

and subsequently increases until reaching steady state, as seen in Figure 1(b).

(c) The third behavior occurs when the number of initial jobs creates an initial system time S̃n0

that is higher than the steady state value. In this case, the average system time is convex in n

and decreases exponentially until reaching steady state, as detected in in Figure 1(c).

(d) The fourth behavior occurs when the initial buffer creates an initial system time S̃n0 that is

substantially larger than the steady state value. The initial decrease is approximately linear

with jobs leaving the system at the rate of µ−λ, as seen in Figures 1(e),(f).

4. Analysis of Queues in Series

In this section, we extend our analysis of single queues to the analysis of tandem queues. Consider

a network of J queues in series and let X(j) = {X(j)1 , . . . ,X(j)n } denote the service times at the jth

queue. We make the following assumptions.

Assumption 2. We make the following assumptions for the service times at the jth queue in a

tandem network. Let 1/µj be the expected service time, Γ(j)s ∈R a parameter that controls the degree

dbertsim
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of conservatism, and 1 <α(j)s ≤ 2 modeling possibly heavy-tailed probability distributions.

(a) For a single-server queue j, the service times belong to the uncertainty set

Usj ={(X(j)1 , . . . ,X(j)n ) ∣
`

∑
i=k+1

Xi −
`−k
µj

≤ Γ(j)s (`−k)1/α(j)s , ∀ 0 ≤ k ≤ ` ≤n } ,

(b) For an m-server queue j, the service times belong to the uncertainty set

Umj ={(X(j)1 , . . . ,X(j)n ) ∣∑
i∈I
X(j)ki −

∣I ∣
µj

≤ Γ(j)m ∣I ∣1/α
(j)
s , ∀ ki ∈Ki, and i ∈ I ⊆ {0, . . . , ν} } .

We further assume that the inter arrival times T = (T1, . . . ,Tn) to the tandem network satisfy the

uncertainty set Ua, as described in Assumption 1.

We consider, for the purpose of the discussion, a tandem network with J single-server queues.

The system time of the nth job at the jth queue is such that

S (j)n = max
0≤kj≤n

⎛
⎝

n

∑
i=kj

X (j)
i −

n

∑
i=kj+1

T (j)i

⎞
⎠
,

where T(j) = (T (j)1 , . . . ,T (j)n ) denote the inter arrival times to queue j. Note that T(j) is exactly the

vector of inter departure times D(j−1) from queue j −1, which can be cast as

n

∑
i=kj+1

T (j)i =
n

∑
i=kj+1

D (j−1)
i =

n

∑
i=kj+1

T (j−1)
i +S (j−1)

n −S (j−1)
kj

.

Recursively, the inter arrival times to queue j can be expressed as a function of the inter arrival

times T to the network and the service times X(1) through X(j−1). For an isolated queue, Bandi

et al. (2012) show that the interdeparture times belong to the inter-arrival uncertainty set Ua.

However, this characterization is only tight under steady-state conditions. Obtaining an exact

transient characterization of the inter-departure process is challenging. Instead of going this route,

we propose to use the recursive formulas that define the dynamics in a network of queues in series

to study the overall system time

Sn =S (1)n + . . .S (J)n .

Bertsimas et al. (2011b) obtain an exact characterization of the system time in a tandem network

of single-server queues where

Sn = max
1≤k1≤...≤kJ≤n

⎛
⎝

k2

∑
i=k1

X(1)i +
k3

∑
i=k2

X(2)i + . . .+
n

∑
i=kJ

X(J)i −
n

∑
i=k1+1

Ti
⎞
⎠
. (29)
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Similarly to the analysis of a single queue, we propose an analysis of the worst case overall sys-

tem time under Assumption 2 which provides closed form bounds. We then leverage the analytic

expressions of the worst case system time to understand the average behavior of tandem queueing

networks with multiple servers.

4.1. Worst Case Performance

Under the worst case approach, and applying the adversarial service times at each queue, the worst

case system time of the nth job for any realization of T is given by

Ŝn (T) = max
1≤k1≤...≤kJ≤n

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)i + max
Us
2

k3

∑
i=k2

X(2)i + . . .+ max
Us
J

n

∑
i=kJ

X(J)i −
n

∑
i=k1+1

Ti
⎞
⎠
. (30)

Theorem 5 provides a similar result for multi-server queues in series, under the assumption that

each queue acts adversarially in view of maximizing its system time, for all T.

Theorem 5. (Worst Case System Time in a Tandem Queue with Multiple Servers)

In a network of J multi-server queues in series with inter arrival times T = {T1, . . . ,Tn}, the overall

system time of the nth job is given by

Ŝn (T) = max
0≤k1≤...≤kJ≤ν

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) + max
Us
2

k3

∑
i=k2

X(2)r(i) + . . .+ max
Us
J

n

∑
i=kJ

X(J)r(i) −
n

∑
i=r(k1)+1

Ti
⎞
⎠
, (31)

where r(i) =n− (ν − i)m.

The proof is similar to the proof presented in Bandi et al. (2012), and presented in Appendix A1.

By minimizing the partial sum of the interarrival times , we obtain an exact characterization of

the worst case system time in a tandem queue as

Ŝn = max
0≤k1≤...≤kJ≤ν

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) + . . .+max
Us
J

n

∑
i=kJ

X(J)r(i) −max
T∈Ua

n

∑
i=r(k1)+1

Ti
⎞
⎠
. (32)
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Initially Empty Queues in Tandem

By Assumption 1, the worst case system time is bounded by

Ŝn (Γa,Γ
(1)
s , . . . ,Γ(J)s ) ≤ max

0≤k1≤...≤kJ≤ν

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

J

∑
j=1

kj+1 −kj +1

µj
+Γ(j)m (kj+1 −kj +1)1/α(j)s

−m(ν −k1)
λ

+Γa [m(ν −k1)]
1/αa

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (33)

which involves a J-dimensional nonlinear optimization problem. Theorem 6 provides a closed form

upper bound on the worst case system time in an initially empty network of J identical queues in

tandem, with µ1 = . . . =µJ and αa =α(1)s = . . . =α(J)s =α.

Theorem 6. (Highest System Time in an Initially Empty Tandem Queue)

In an initially empty network of J multi-server queues in series with T ∈ Ua, X(j) ∈ Usj , for all

j = 1, . . . ,J , αa =α(1)s = . . . =α(J)s =α, and Γ =m1/αΓa +Γm > 0, where

Γm = (
J

∑
j=1

(Γ(j)+m )α/α−1)
α−1/α

, (34)

the worst-case system time for µ1 = . . . =µJ and ρ < 1 is given by

Ŝn ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ ⋅ν1/α −m(1−ρ)
λ

ν + J
µ
+

J

∑
i=1

Γ(i)+m , if ν +J ≤ [ λΓ

αm(1−ρ)
]
α/(α−1)

α−1

αα/(α−1) ⋅
λ1/(α−1) ⋅Γα/(α−1)

[m(1−ρ)]1/(α−1) +
J

µ
+

J

∑
i=1

Γ(i)+m , otherwise.

(35)

Proof of Theorem 6. From Eq. (33), we have that the worst case system time is given by

Ŝn =
J

µ
+ max

0≤k1≤...≤kJ≤ν

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[Γ(1)+m (k2 −k1 +1)1/α + . . .+Γ(J)+m (ν −kJ +1)1/α]+

Γa [m(ν −k1)]
1/α −m(1−ρ)

λ
(ν −k1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Furthermore, since (kj+1 −kj +1)1/α ≤ (kj+1 −kj)
1/α +1, for all j=1,. . . , J, we obtain

Ŝn ≤
J

µ
+

J

∑
j=1

Γ(j)+m + max
0≤k1≤...≤kJ≤ν

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[Γ(1)+m (k2 −k1)
1/α + . . .+Γ(J)+m (ν −kJ)

1/α]+

Γa [m(ν −k1)]
1/α −m(1−ρ)

λ
(ν −k1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We will isolate the problem of maximizing [Γ(1)+m (k2 −k1)
1/α + . . .+Γ(J)+m (ν −kJ)

1/α] for fixed values
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of k1, ν, and make the transformations x1 = k2 −k1, . . . ,xJ = ν −kJ , where xj ∈N, for all j = 1, . . . ,J .

With these transformations, the optimization problem simplifies to

max
0≤k1≤ν,k1∈N

⎛
⎜⎜⎜
⎝
m1/αΓa (ν −k1)

1/α −m(1−ρ)
λ

(ν −k1)+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max [Γ(1)+m x1/α
1 + . . .+Γ(J)+m x1/α

J ]
s.t. x1 + . . .+xJ = ν −k1

xj ∈N,∀j = 2, . . . ,J

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟
⎠
. (36)

It is easy to see, based on first order optimality conditions (see Appendix B), that the optimal

solution to the inner optimization problem satisfies

Γ(1)+m (x∗1)1/(α−1) =Γ(2)+m (x∗2)1/(α−1) = . . . =Γ(J)+m (x∗J)1/(α−1).

Using the additional condition that ∑J
j=1x

∗
j = 1, we obtain

x∗k =
(ν −k1)(Γ(k)+m )α/(α−1)

J

∑
j=1

(Γ(j)+m )α/(α−1)
∀k = 1,2, . . . ,J,

leading to an optimal value of

Γ(1)+m (x∗1)1/α + . . .+Γ(J)+m (x∗1)1/α = (
J

∑
j=1

(Γ(j)+m )α/(α−1))
(α−1)/α

.

Substituting the optimal solution of the inner problem in Eq. (36), the performance analysis reduces

to solving the following one-dimensional optimization problem

max
0≤k1≤ν

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
m1/αΓa + [

J

∑
j=1

(Γ(j)+m )α/(α−1)]
(α−1)/α⎞

⎠
⋅ (ν −k1)

1/α −m(1−ρ)
λ

(ν −k1)
⎫⎪⎪⎬⎪⎪⎭
, (37)

which can be cast in the form of the optimization problem in Eq. (15), with

β =m1/αΓa +(
J

∑
j=1

(Γ(j)+m )α/(α−1))
(α−1)/α

and δ = m(1−ρ)
λ

.

Referring to the proof of Theorem 3, the solution to Eq. (37) is

max
J≤x≤ν+J

β ⋅x1/α − δ ⋅x =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β ⋅ν1/α − δ ⋅ν, if ν +J ≤ ( β

αδ
)α/(α−1)

α−1

αα/(α−1) ⋅
βα/(α−1)

δ1/(α−1) , otherwise.

We obtain the desired result by substituting β and δ by their respective values. ◻



Author: Robust Transient Multi-Server Queues and Feedforward Networks

26 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

The case where Γ =m1/αΓa +Γm ≤ 0 arises when Γa < 0, since Γm > 0 as defined in Eq. (34). This

scenario is characterized by long inter-arrival times yielding zero waiting times. The worst case

system time therefore reduces to

Ŝn =
J

∑
j=1

X̂(j)n ≤ J
µ
+

J

∑
j=1

Γ(j)+m .

Note that this scenario becomes less likely with an increased number of queues in series.

Initially Nonempty Queues in Tandem

We next analyze the case where n0 > 0. The first m jobs in the queue are routed immediately to the

servers of the first queue without any delays. We are interested in the behavior for n0 >m. Since

Ti = 0 for all i = 1, . . . ,n0, we can rewrite Eq. (32) as

(a) for n ≤n0 ∶ Ŝn = max
0≤k1≤...≤kJ≤ν≤γ

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) + . . .+max
Us
J

n

∑
i=kJ

X(J)r(i)
⎞
⎠

(38)

(b) for n >n0 ∶ Ŝn = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
0≤k1≤...≤kJ≤ν

k1≤γ

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) + . . .+max
Us
J

n

∑
i=kJ

X(J)r(i)
⎞
⎠
−max

T∈Ua

n

∑
i=n0+1

Ti,

max
γ<k1≤...≤kJ≤ν

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) + . . .+max
Us
J

n

∑
i=kJ

X(J)r(i) −max
T∈Ua

n

∑
i=r(k1)+1

Ti
⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(39)

By Assumption 1, the worst case system time involves solving J-dimensional nonlinear optimization

problems. Theorem 7 provides a closed form bound on the worst case system time in an initially

nonempty network of J identical queues in tandem, with µ1 = . . . =µJ and αa =α(1)s = . . . =α(J)s =α.

Theorem 7. (Highest Waiting Time in an Initially Nonempty Tandem Queue)

In an initially nonempty network of J multi-server queues in series with n0 >m, T ∈Ua, X(j) ∈Usj ,

for all j = 1, . . . ,J , αa = α(1)s = . . . = α(J)s = α, and Γ =m1/αΓa + Γm > 0, where Γm is defined in Eq.

(34), the worst-case system time for µ1 = . . . =µJ and ρ < 1 is given by
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Ŝn ≤max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν +J
µ

+Γm ⋅ (ν +J)
1/α − (n−n0)+

λ
+γa [(n−n0)

+]1/α
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ [(ν −φ)+]1/α −m(1−ρ)
λ

(ν −φ)+, if (ν −φ)+ < [ λΓ/m
α(1−ρ)

]
α/(α−1)

α−1

αα/(α−1)

λ1/(α−1) ⋅Γα/(α−1)

[m(1−ρ)]1/(α−1) , otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (40)

The proof is similar to the proof of Theorem 6, and presented in Appendix A2. Note that, for the

case where Γ =m1/αΓa +Γm ≤ 0, the worst case system time

Ŝn (
ν +J
µ

+Γm ⋅ (ν +J)
1/α − (n−n0)+

λ
+γa [(n−n0)

+]1/α
,
J

µ
+

J

∑
j=1

Γ(j)+m } .

In this case, the nth job experiences a waiting time only due to the buildup effect left by the initial

jobs. For big enough n, this effect becomes negligible and the system time eventually becomes

equal to sum of the service times.

4.2. Average Case Behavior

To analyze the average behavior of a queueing system, we treat the parameters (γa,Γa) and

(γ(j)m ,Γ(j)m ) as random variables and compute S̃n, the expected value of the worst case system time.

Similarly to the case of a single queue, we express S̃n as

S̃n =E[max{Ŝ bn (γa,Γm) , Ŝtn (Γa,Γm) ⋅1 tn (Γa,Γm)+ Ŝs (Γa,Γm) ⋅1sn (Γa,Γm)}] ,

where Ŝ bn, Ŝ tn, and Ŝs denote the quantities associated with the system time effected by the initial

buffer n0, the transient state and the steady state, respectively, and Γm is a function of Γ(j)m , for

j = 1, . . . ,J , as depicted in Eq. (34). Also the indicator functions 1tn and 1
s
n reflect the condition

for the system to be in the transient state and the steady state, respectively, with

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
t
n (Γa,Γm) = 1 if m1/αΓa +Γm > αm(1−ρ)

λ
⋅(⌊ n

m
⌋− ⌊n0

m
⌋)
(α−1)/α

1
s
n (Γa,Γm) = 1 otherwise.

By positing some assumptions on the distributions of the parameters {(γa,Γa) ,(γm,Γm)}, we

compute Ŝn via numerical integration.
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Choice of Variability Distributions

For a network of J queues in series, we propose to express the parameters

Γa = θaγa , Γ(j)s = θsγ(j)s and Γ(j)m = θmγ(j)m = θm
γ(j)s

m(α−1)/α ,

where γa and γ(j)s follow limiting distributions as defined in the case of a single queue, for j = 1, . . . ,J .

More specifically, γa ∼N (0,σa) and γ(j)s ∼N (0,σs) for light-tailed primitives, γa ∼ Sα (−1,Cα,0)

and γ(j)s ∼S (1,Cα,0) for heavy-tailed primitives. Note that the effective parameter Γm is captured

as a function of Γ(j)m , for j = 1, . . . ,J . Specifically, by Eq. (34),

Γm = (
J

∑
j=1

(Γ(j)+m )α/α−1)
α−1/α

= θm
m(α−1)/α ⋅γ

+
s where γ+s = (

J

∑
j=1

(γ(j)+s )α/α−1)
α−1/α

. (41)

We propose an approximation of the distribution of γ+s by fitting generalized extreme value distri-

bution to the sampled distribution with a shape parameter ψs, scale parameter ξs and a location

parameter φs. Table 3 summarizes the parameters defining the generalized extreme value distribu-

tion for light-tailed service times with σs = 1 and heavy-tailed queues for J = 10,25 and 50. Figure

3 shows that this fit provides a good approximation of the sampled distribution for the example of

J = 25 queues in series.

Table 3 Generalized extreme value distributions for γ+s for light (σs = 1) and heavy-tailed services.

10 Queues 25 Queues 50 Queues

Parameters α = 2 α = 1.6 α = 1.7 α = 2 α = 1.6 α = 1.7 α = 2 α = 1.7 α = 1.6

ψs -0.20 0.32 0.42 -0.21 0.36 0.44 -0.22 0.42 0.50

ξs 0.76 1.70 1.95 0.77 2.34 2.94 0.78 3.10 4.10

φs 1.78 2.36 2.37 3.13 4.63 4.92 4.65 7.89 7.89

This step allows us to reduce the computational effort to obtain Ŝn from solving a (J + 1)-

dimensional integral with respect to γa and γ(j)s to a double integral with respect to γa and γ+s . We

next take a similar approach to choose (θa, θs, θm) as in the case of a single queue.

(a) Light-Tailed Queues: The overall expected system time in a tandem network of identical queues

Sn =S
(1)
n + . . .+S

(J)
n = J ⋅S

(j)
n ≤ J ⋅ λ

2(1−ρ)
⋅ (σ2

a +σ2
s/m2) ,
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Figure 3 Sampled distribution and fitted generalized extreme value distribution for the effective service parameter

γ+s for the case of J = 25 queues in series with (a) α = 2, (b) α = 1.7, and (c) α = 1.6.

where the last equality stems from the bound by Kingman (1970). We then ensure that S̃n

matches the above expression, i.e.,

λ

4(1−ρ)
⋅E[(γ+)2] = λ

2(1−ρ)
⋅ (Jσ2

a +Jσ2
s/m2) , (42)

where γ = θaγa + θmγ+s /m and γ+s is defined in Eq. (41). The expected value in Eq. (42)

E[(γ+)2] ≈P(γ ≥ 0) ⋅E [γ2] =P(γ ≥ 0) ⋅ (θ2
aσ

2
a + θ2

mE[(γ+s )
2]/m2) .

Given the symmetry of the normal distribution, we express the second moment of γ+s as

E[(γ+s )
2] =E[

J

∑
j=1

(γ(j)+s )
2
] = J ⋅E[(γ(j)+s )

2
] = J ⋅P(γ(j)s ≥ 0) ⋅E[(γ(j)s )

2
] = J ⋅P(γ(j)s ≥ 0) ⋅σ2

s .

By pattern matching the two expressions in Eq. (42), the parameters θa and θm are such that

θa ≈ ( 2J

P(γ ≥ 0)
)

1/2

and θm ≈ ( 2

P(γ ≥ 0) ⋅P(γ(j)s ≥ 0)
)

1/2

. (43)

Note that, given that γs is a normally distributed distributed random variable centered around

the origin, we have P(γ(j)s ≥ 0) = 1/2. Also,

P(γ ≥ 0) =P(θaγa + θmγ+s /m ≥ 0) =P(J1/2 ⋅γa +21/2 ⋅γ+s /m ≥ 0) ,

which can be efficiently computed numerically.
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(b) Heavy-Tailed Queues: Since the steady state does not exist for heavy-tailed queues, we propose

to extend the formulas for θa and θm and obtain

θa ≈ ( αJ

P(γ ≥ 0)
)
(α−1)/α

and θm ≈ ( α

P(γ ≥ 0) ⋅P(γ(j)s ≥ 0)
)
(α−1)/α

, (44)

where γ = θaγa + θmγ+s /m, γ+s is defined in Eq. (41) . Note that the probabilities

P(γ(j)s ≥ 0) and P(γ ≥ 0) =P(J (α−1)/α ⋅γa +P(γ(j)s ≥ 0)−(α−1)/α ⋅γ+s /m ≥ 0)

can be efficiently computed numerically given the distributions of γa, γ
(j)
s and γ(+)s .

Computational Results

We investigate the performance of our approach relative to simulation and examine the effect

of the system’s parameters (traffic intensity, tail coefficient, initial buffer and number of servers)

on its accuracy. Specifically, we run simulations for single and multi-server queues with normally

and Pareto distributed inter arrival and service times. Tables 4 and 5 report the errors relative

to simulation until either relaxation is reached or the maximum number of jobs the simulation

was run for (N = 20,000 for both light-tailed and heavy-tailed queues). Figure 4 compares our

approximation (dotted line) with simulation (solid line) for normally and Pareto distributed queues

in series with a traffic intensity ρ = 0.90.

Table 4 Errors for multi-server tandem queues with normally distributed primitives.

10 Queues⋆ 25 Queues† 50 Queues‡

ρ n0 = 0 n0 = 20 n0 = 50 n0 = 0 n0 = 50 n0 = 0 n0 = 100

σ
a
=
σ
s
=

2.
5 0.90 5.83 3.59 6.36 0.74 3.38 0.85 2.39

0.92 4.85 2.82 5.58 0.81 3.41 0.82 2.41

0.94 4.28 2.28 5.68 0.92 3.26 0.81 2.33

0.96 4.68 2.22 4.54 1.10 3.57 0.77 2.26

σ
a
=
σ
s
=

4.
0 0.90 1.67 2.66 2.75 1.68 3.18 1.77 2.62

0.92 1.98 1.52 5.91 1.93 3.46 1.73 2.32

0.94 2.32 2.26 4.07 2.45 4.37 1.80 2.23

0.96 2.12 3.46 2.79 2.46 4.74 4.39 5.74
⋆m = 1 for 10 tandem queues, †m = 10 for 25 tandem queues, ‡m = 20 for 50 tandem queues.



Author: Robust Transient Multi-Server Queues and Feedforward Networks

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 31

Table 5 Errors for single-server tandem queues with Pareto distributed primitives.

10 Queues 25 Queues 50 Queues

ρ n0 = 0 n0 = 2000 n0 = 0 n0 = 3500 n0 = 0 n0 = 5000

α
a
=
α
a
=

1
.6 0.90 9.80 5.11 2.89 2.31 4.88 4.77

0.92 4.30 3.52 7.88 1.82 3.13 1.81

0.94 2.40 2.10 7.94 2.95 16.6 7.84

0.96 2.82 2.54 14.7 5.22 16.5 6.71

α
a
=
α
s
=

1
.7 0.90 24.3 7.79 5.61 2.17 5.31 3.93

0.92 15.8 6.69 2.85 1.04 10.0 2.82

0.94 11.6 4.72 3.45 2.77 12.6 5.91

0.96 6.34 3.92 5.67 3.55 11.6 5.92
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Figure 4 Simulated (solid line) versus predicted values (dotted line). Panels (a)-(d) correspond to normally

distributed queues in series with σa = 2.5 and ρ = 0.90 with J = 10, m = 1, and n0 = 0,20 (panels

(a) and (b), respectively) and J = 25, m = 10, and n0 = 0,50 (panels (c) and (d), respectively).

Panels (e) and (f) correspond to a tandem network with J = 50 single-server queues with Pareto

distributed primitives (αa =αs = 1.7), ρ = 0.90, and n0 = 0 and n0 = 5000, respectively.
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Our approach generally yields errors within 10% for multi-server queues with normally dis-

tributed inter arrival and service times. Errors for heavy-tailed multi-server queues are mostly

within 10% with occasional outliers. We notice a difference in the behavior of tandem queues

with n0 > 0, namely the system exhibits slower recovery for the initial perturbation, as shown in

Figure 4(b),(c) for light-tailed queues and Figure 4(f) for heavy-tailed queues. We note that we

omit the results for tandem networks of multi-server Pareto queues in this draft due to the high

computational cost of simulations.

5. Insights and Computational Tractability

In this section, we discuss the implications of our framework. In particular, our approach (a) pro-

vides analytical tractability leading to insights that meet the conclusions of probabilistic queueing

theory and (b) ensures computational tractability leading to reasonably accurate predictions.

5.1. Insights

We draw the following insights from our analysis for both light-tailed and heavy-tailed systems.

Light-Tailed Multi-server Queueing Systems

In a multi-server queue characterized by the set of parameters {(γa,Γa) ,(γs,Γs)}, the worst case

system time is characterized by two distinct states of behavior: (a) a transient state where the

system time is dependent on n, and (b) a steady state where the system time is independent of

n. Figure 5 shows a graphical representation of the evolution of the worst case system time under

our modeling assumptions.

In the queueing literature, the time it takes the system to reach steady state is referred to as

relaxation time. We define the robust relaxation time under the worst case setting as the num-

ber of jobs observed by the queue before reaching steady state, for a given set of parameters

{(γa,Γa) ,(γs,Γs)}. For an initially empty queue, the robust relaxation time is defined as

n̂r =m ⋅ [ λΓ+

2m(1−ρ)
]

2

,
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Figure 5 Worst case system time for a single-server queue with ρ = 0.95, Γa = 0 and Γs = 0,1 (respectively

curves (1) and (2)), for (a) zero initial jobs, i.e., n0 = 0, and (b) 5 initial jobs, i.e., n0 = 5. The

dotted lines indicate the phase change from transient to steady state.

where Γ =m1/αΓa +Γs.

Table 6 summarizes the effect of the traffic intensity on the steady-state system time and the

robust relaxation time.

Table 6 System time behavior in a light-tailed multi-server queue.

Steady System Time∗ Relaxation Time∗

O( (Γ+)2

m(1−ρ)
) O( n0

1−ρ
)+O( (Γ+)2

m(1−ρ)2
)

∗ Γ =m1/2Γa +Γs.

Increasing the traffic intensity from ρ1 to ρ2 and keeping all other parameters unchanged yields an

increase of the order of

[(1−ρ1

1−ρ2

)
2

−1] ⋅100% and [(1−ρ1

1−ρ2

)−1] ⋅100%

in the robust relaxation time and the steady state worst case system time, respectively, for Γ > 0.

For instance, increasing the traffic intensity from 0.97 to 0.98 and from 0.98 to 0.99 results in a 50%

and 100% increase in the steady state worst case system time, while the robust relaxation time
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experiences an increase by 120% and 300%, respectively. This asserts the observation by Morse

(1955) that, as saturation of the system is approached, the waiting time increases, but the length

of the time for the system time to reach steady state increases even more markedly.

The insights from Table 6 extend to the average steady-state system time and relaxation time.

While the bound on the expected steady-state system time provided by Kingman (1970) provides

a good estimate of S∞, our averaging technique helps determine the average time it takes until

steady state is reached in closed form, without having to compute the system time for every job

in the queue. In fact, we know that, for any given job n, the system is in steady state as long as

n ≥m ⋅ [ λΓ+

2m(1−ρ)
]

2

, or equivalently Γ+ ≤ 2m(1−ρ)
λ

(n/m)1/2
.

Therefore, the system reaches steady state by the nth job with probability

P(Γ+ ≤ 2(1−ρ)
λ

⋅ (n− r)1/2) = p.

Knowing the probability distribution of the effective parameter Γ, we can find the desired value

for any percentile. We can then compute an approximation of the number of jobs on average that

the system needs to service to be p-close to S∞. Specifically,

2(1−ρ)
λ

⋅ (npr /m)1/2 =F −1 (p) yielding npr =m ⋅(λ ⋅F
−1 (p)

2(1−ρ)
)

2

, (45)

where F (⋅) denotes the cumulative distribution of Γ. This simple calculation provides a powerful

tool for practitioners who are concerned with estimating how long it takes the system to come

reasonably close to its steady state.

Heavy-Tailed Multi-server Queueing Systems

Under probabilistic assumptions, heavy-tailed queues are characterized by an infinitely long tran-

sient state as they never reach steady state. However, in our robust framework, for a given set of

parameters {(γa,Γa) ,(γs,Γs)}, we attribute a steady state value, even for queues with heavy-tailed

arrivals/services. The concept of a worst case steady state for systems with heavy tails stems from
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the assumptions of boundedness of the interarrival and service times implied by Assumption 1,

which involves a truncation of the tails. Specifically, under the worst case paradigm, lower tail

coefficients, and therefore heavier tails, yield an increase in both the relaxation and steady state

system times as suggested by Table 7.

Table 7 Effect of traffic intensity and heavy tails on worst case behavior of multi-server queues.

Worst Case Steady System Time∗ Robust Relaxation Time∗

O
⎛
⎝

(Γ+)α/α−1

m(1−ρ)1/(α−1)

⎞
⎠

O( n0

1−ρ
)+O

⎛
⎝
m ⋅ [ Γ+

m(1−ρ)
]
α/(α−1)⎞

⎠

∗ Γ =m1/αΓa +Γs.

To illustrate this, we consider an initially empty single server queue and incrementally decrease

the tail coefficient from α = 2 to α = 1.75 and from α = 1.75 to α = 1.5. For a traffic intensity ρ = 0.95,

and a choice of Γa = 0 and Γs = 1, the steady state worst case system time experiences an increase

by 115% and 420%, respectively, and the relaxation time increases by 190% and 680% respectively.

Our averaging technique allows us to reconcile our conclusions with probabilistic queueing theory.

From Table 7, the average system time is proportional to E [(Γ+)α/(α−1)] . When Γa and Γs are

heavy-tailed random variables, then moments of Γa and Γs higher than or equal to the second

moment are infinite, implying that E [(Γ+)α/(α−1)] is infinite for α < 2. This leads to the conclusion

that the average steady-state system time S̃∞ and the relaxation time are infinite for heavy-tailed

queues, which is in agreement with conclusions of probabilistic analysis.

5.2. Computational Tractability

Another key feature of our approach is the computational tractability in computing the system

time evolution with time for a variety of queueing systems. Our approach, for all the queueing

systems we considered, consists of a double integral which we compute by discretization. As we have

demonstrated in Sections 3 and 4, to achieve errors of less than 20%, we use a discretization of a

thousand. In particular, our approach takes on average on the order of milli-seconds for computing

the expected system time or waiting time. Moreover, our approach takes the same time irrespective
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of the system parameters: traffic ratio (ρ), number of servers (m), light or heavy tailed nature (α),

and the number of queues in the tandem system (J). This is in contrast to simulation which is the

traditional way of calculating the average system time in these queues. On the other hand, in our

approach, we are required to simulate only two random variables Γa,Γs, and is therefore efficient.

We elaborate on this further.

(a) Computational complexity of calculating E[Sn]: When using simulation to calculate

E[Sn], it is required to simulate all the jobs until n, requiring us to simulate an O(n)–

dimensional random vectors of inter-arrival times and service times. On the other hand, in our

approach, we are required to perform only a double integration, which is significantly faster.

(b) Presence of Heavy tails and Heavy traffic: It is well known that the number of sample

paths required grows for heavy traffic as well as heavy tailed systems (see Fishman and Adan

(2006), Asmussen et al. (2000), Blanchet and Glynn (2008)). In our approach, even for heavy

tails and heavy traffic, we use the same level of discretization to calculate the double integrals.

(c) Simulation of a multi-server system: For simulating a FCFS multi-server queueing system,

one of the key steps involves sorting the workloads at each server to assign a job to a server.

This sorting process is required for each sample path. On the other hand, we present a closed

form solution to the case of multi-servers and this sorting step is not required.

(d) Simulation of a tandem queueing system: For simulating a tandem queueing system, we

need to simulate each queue in the system for all the n jobs, which is avoided in our approach.

6. FeedForward Networks with Deterministic Routing

In this section, we extend our analysis approach to analyze new queueing systems. As a case study,

we consider the the case of feed-forward networks. In feed-forward queueing networks each job is

passed from one queue to the next without returning to an earlier passed one, making them acyclic.

We exploit this acyclic or a tree structure to view a feed-forward network as a combination of

tandem queues. In particular, we will illustrate using our approach in the context of a feed-forward

network of single servers with deterministic routing.
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Consider a feed-forward network with node set N , and routing adjacency matrix A, with the

interpretation that Aij = 1 if and only if there is a link from i to j. Under a deterministic routing,

such a network is characterized by the sets Li, ∀i ∈N where Li is the sequence of all jobs that

pass through node i. Note that for a feed-forward network, the sets Li, ∀i ∈N satisfy the following

properties:

(1) Li = ⋃
j∈N ∣Aij=1

Lj, (2) Li ∩Lj =∅, ∀i, j that do not share a parent node.

Given such a network, Proposition 2 characterizes the worst case system of an nth job in a feed-

forward network composed of single-server queues with deterministic routing. Proposition 2 also

generalizes to the case of feed-forward network of multi-server queues, based on the same intuition.

Note that for a tandem queue of J nodes, this reduces to our previous results.

Proposition 2. (System Time in a Feed-forward Network with Deterministic Routing)

In a feed-forward network of single server queues characterized by {N ,A} with inter arrival times

T = {T1, . . . ,Tn} , and service times {X(i) ∈Usi }i∈N . Suppose the set of all nodes that job n passes

through M nodes given by {a1, a2, . . . , aM}, then the overall system time of the nth job is given by

Ŝn (T) = max
k1,...,kM

⎛
⎜⎜⎜
⎝

max
Usa1

k2

∑
i=k1,i∈La1

X(a1)i + max
Usa2

k3

∑
i=k2
i∈La2

X(a2)i + . . .+ max
UsaM

n

∑
i=kM
i∈LaM

X(aM )i −
n

∑
i=k1+1

Ti

⎞
⎟⎟⎟
⎠
,

where {ki}
M

i=1 satisfy k1 ≤ k2 ≤ . . . ≤ kM and ki ∈Lai for all i = 1, . . . ,M .

As an illustration, we consider the sample feedforward network depicted in Figure 8. This network

is characterized by N = {1,2,3,4,5,6,7} , and A given by

A12 =A13 =A24 =A25 =A36 =A37 = 1, Aij = 0 otherwise.

Furthermore, the sets Li are given by

L1 = {1,2,3,4, . . .} , L2 = {2,4,6, . . .} , L3 = {1,3,5, . . .} , L4 = {4,8,12, . . .} , and so on.
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Figure 6 Simple Feed-forward network with deterministic routing.

Consider job n and suppose it goes through nodes 1,2, and 4 which happens when n is a multiple

of four. Applying Proposition 2, we obtain

Ŝn (T) = max
k1,k2,k3

⎛
⎝

max
Us
1

k2

∑
i=k1,i∈L1

X(1)i + max
Us
2

k3

∑
i=k2,i∈L2

X(2)i + max
Us
4

n

∑
i=k3,i∈L4

X(4)i −
n

∑
i=k1+1

Ti
⎞
⎠
.

By applying the bounds from the uncertainty assumptions over the service times,

Ŝn (T) ≤ max
k1,k2,k3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2 −k1 +1

µ1

+Γ1+
s ⋅ (k2 −k1 +1)1/α + (k3 −k2)/2+1

µ2

+Γ2+
s ⋅(k3 −k2

2
+1)

1/α

+(n−k3)/4+1

µ4

+Γ4+
s ⋅(n−k3

4
+1)

1/α

−
n

∑
i=k1+1

Ti

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

which follows from the fact that there are (k3 − k2)/2+ 1 jobs between kth
2 and kth

3 job in node 2,

and (n−k3)/4+1 jobs between kth
3 and nth job in node 4. Following the same approach, Proposition

3 presents the expression of the worst case system time in a feed-forward network composed of

single-server queues with deterministic routing.

Proposition 3. (Highest System Time in a Feed-forward Network with Single Servers)

In a feed-forward network of single server queues characterized by {N ,A} with inter arrival times

T = {T1, . . . ,Tn} , and service times {X(i) ∈Usi }i∈N . Suppose the set of all nodes that job n passes

through M nodes given by {a1, a2, . . . , aM}, then the overall system time of the nth job is given by
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Ŝn ≤ max
ki

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2 −k1

µ1

+Γ1+
s ⋅ (k2 −k1)1/α + p2(k3 −k2)

µ2

+Γ2+
s ⋅ [p2(k3 −k2)+1]1/α + . . .+

pM(n−kM)+1

µM
+ΓM+

s ⋅ [pM(n−kM)+1]1/α +
M

∑
i=1

( 1

µi
+Γi+s )− n−k1

λ
+Γa(n−k1)1/α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where pi = ∣Lai ∣ / ∣La1 ∣ and {ki}
M

i=1 satisfy k1 ≤ k2 ≤ . . . ≤ kM , ki ∈Lai , ∀i = 1, . . . ,M.

We perform a change of variable by let x1 = k2 −k1, x2 = k3 −k2, . . . , xM =n−kM , which yields

Ŝn ≤h(x1,x2, . . . ,xM) = max
xi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

µ1

+Γ1+
s ⋅ (x1)1/α + p2x2

µ2

+Γ2+
s ⋅ (p2x2)

1/α + . . .+

PMxM
µM

+ΓM+
s ⋅ (PMxM)1/α +

M

∑
i=1

( 1

µi
+Γi+s )− n−k1

λ
+Γa(n−k1)1/α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where pi = ∣Kai ∣ / ∣Ka1 ∣ for all i = 1, . . . ,M . By letting µ̃i =µi/pi and Γ̃is =Γis ⋅ p
1/α
i , for all i = 1, . . . ,M ,

the worst case system time becomes

Ŝn ≤h(x1,x2, . . . ,xM) ≤ max
x1,...,xM

(
M

∑
i=1

xi
µ̃i
+
M

∑
i=1

Γ̃M+
s ⋅ (xM)1/α +

M

∑
i=1

( 1

µi
+Γi+s )− ∑

M
i=1xi
λ

+Γa(n−k1)1/α) .

The function h(⋅) is concave and therefore allows efficient solution. We next provide an upper

bound. Note that ∑M
i=1xi = n− k1, and by using the approach taken in the proof of Theorem 6 in

Eq. (36), we obtain

Ŝn ≤ max
x1,...,xM

⎧⎪⎪⎨⎪⎪⎩

M

∑
i=1

xi
µ̃i
+ (n−k1)1/α (

M

∑
i=1

(Γ̃(i)+s )α/α−1)
α−1/α

+
M

∑
i=1

( 1

µi
+Γi+s )− n−k1

λ
+Γa(n−k1)1/α

⎫⎪⎪⎬⎪⎪⎭

≤ max
k1

⎧⎪⎪⎨⎪⎪⎩

n−k1

min{µ̃i}
+ (n−k1)1/α (

M

∑
i=1

(Γ̃(i)+s )α/α−1)
α−1/α

+
M

∑
i=1

( 1

µi
+Γi+s )− n−k1

λ
+Γa(n−k1)1/α

⎫⎪⎪⎬⎪⎪⎭

After this point, the structure of the worst case system time is akin to what we obtained in our

previous sections. To compute the average system time Ŝn, we use an averaging algorithm similar

to the averaging algorithm we used in Sections 3 and 4 as follows.

Step 1. Estimate parameters θa, θm: To do this, we compare the steady state system time with the

one obtained in simulation. To compute the steady state system time, we use the closed

form bounds we obtained in Bandi et al. (2012) for general queueing networks.
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Step 2. Estimate averaging probability distributions: To do this, we follow the methodology of

previous sections and fit a distribution to the the parameters Γa and

Γffwd = (
M

∑
i=1

(Γ̃(i)+s )α/α−1)
α−1/α

.

Step 3. Compute double integrations: Finally, we compute the average system time of the nth job

by solving a double integral with respect to Γa and Γffwd.

This algorithm reduces to the one we presented in Section 4 for a tandem system of queues.

7. Concluding Remarks

We study the problem of analyzing the transient system time in multi-server queueing systems and

feedforward networks with deterministic routing. We model the system’s interarrival and service

times via polyhedral sets which are characterized by parameters that control the degree of con-

servatism. We obtain closed form expressions for the worst case system time revealing qualitative

insights on the dependence of the system time as a function of the traffic intensity and the tail

behavior of interarrival and service times in multi-server queues and feedforward networks with

deterministic routing.

We propose a novel algorithm to approximate the expected system time by averaging the

worst case system times obtained by choosing different levels of conservatism. This is done by

treating the parameters characterizing the uncertainty sets as random variables. This methodology

achieves tractability given that we collapse the dimension of uncertainty to two parameters.

Furthermore, our approach yields accurate predictions with low errors relative to simulation. The

proposed methodology provides a novel framework to study stochastic systems that combines the

computational tractability of optimization and the notion of dimensional reduction of uncertainty.
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Appendix A

A1. Proof of Theorem 5

Proof of Theorem 5. We prove the result using the technique of mathematical induction.

(a) Initial Step: As presented in Bandi et al. (2012), we can express the system time in an

m-server queue as

Ŝn (T) = Ŝ (1)n (T) = max
0≤k1≤ν

⎛
⎝

max
X(1)∈Usm

ν

∑
i=k1

X(1)r(i) −
n

∑
i=r(k1)+1

Ti
⎞
⎠
,

and therefore the result holds for J = 1.

(b) Inductive Step: We now suppose that the result holds for J − 1 queues in series, which

expresses the system time across queues 2 through J as

Ŝ (2)n (T)+ . . .+ Ŝ (J)n (T) = max
0≤k2≤...≤kJ≤ν

⎛
⎝

max
Us
2

k3

∑
i=k2

X(2)r(i) + . . .+ max
Us
J

n

∑
i=kJ

X(J)r(i) −
n

∑
i=r(k2)+1

T (2)i

⎞
⎠
, (46)

where T(2) = {T (2)1 , . . . ,T (2)n } denotes the sequence of interarrival times to the second queue.

Note that the arrival to the second queue is simply the departure from the first queue, and

therefore, denoting the interderpature times from the first queue by D(1) = {D(1)1 , . . . ,D(1)n },

we have

∑
i=r(k2)+1

T (2)i = ∑
i=r(k2)+1

D(1)i =
n

∑
i=(k2)+1

Ti + Ŝ (1)n (T)− Ŝ (1)r(k2)
(T) , (47)

where the last equality is due to the fact that no overtaking occurs at the first queue in the

worst case approach. Combining Eqs. (46)-(47), we obtain

Ŝn (T) = Ŝ(1)n (T)+ Ŝ(2)n (T)+ . . .+ Ŝ(J)n (T)

= max
0≤k2≤...≤kJ≤ν

⎛
⎝

max
Us
2

k3

∑
i=k2

X(2)r(i) + . . .+max
Us
J

n

∑
i=kJ

X(J)r(i) −
n

∑
i=r(k2)+1

T (2)i + Ŝ (1)r(k2)
(T)

⎞
⎠
. (48)

Since no overtaking occurs in the first queue, and given that ⌊r (k2)/m⌋ = k2, the system time

of the r (k2)
th

job can be expressed as

S (1)r(k2)
(T) = max

0≤k1≤k2

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) −
r(k2)

∑
i=r(k1)+1

Ti
⎞
⎠
.
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Substituting the above expression in Eq. (48), the overall system time becomes

Sn = max
0≤k2≤...≤kJ≤ν

⎛
⎝

max
Us
2

k3

∑
i=k2

X(2)r(i) + . . .+max
Us
J

n

∑
i=kJ

X(J)r(i) −
n

∑
i=r(k2)+1

Ti + max
0≤k1≤k2

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) −
r(k2)

∑
i=r(k1)+1

Ti
⎞
⎠
⎞
⎠
.

Rearranging the terms in the above expression yields the desired result. ◻

A2. Proof of Theorem 7

Proof of Theorem 7. We show that, after bounding the terms in Eqs. (38) and (39), we obtain

simple one-dimensional optimization problems for which an analytic solution exists.

(a) We first consider the case where n ≤ n0 . By following the same procedure for bounding the

partial sums of the service times applied in the proof of Theorem 6, we obtain the following

bound on the worst case system time

Ŝn (Γm) = max
0≤k1≤...≤kJ≤ν≤φ

(ν −k1 +J
µ

+Γ+
m [(k2 −k1 +1)1/α + . . .+ (ν −kJ +1)1/α]),

where Γm =max(Γ(1)s , . . . ,Γ(J)s ). By making the transformation x1 = k2−k1+1, . . . ,xJ = ν−kJ +1

, where xj ∈ N, for all j = 1, . . . ,J , we can represent the maximization problem in the above

expression as which simplifies to

max
0≤k1≤ν≤φ,k1∈N

⎛
⎜⎜⎜
⎝

ν −k1 +J
µ

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max Γ+
m [x1/α

1 + . . .x1/α
J ]

s.t. x1 + . . .+xJ = ν −k1 +J
kj ∈N,∀j = 2, . . . ,J

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟
⎠
. (49)

We relax the above optimization problem by assuming all variables are continuous. Note that,

since Γ+
m ≥ 0, the inner optimization problem is maximized for

x∗1 = x∗2 = . . . = x∗J =
ν −k1 +J

J
.

Substituting the optimal solution of the inner problem in Eq. (49), the performance analysis

reduces to solving the following one-dimensional optimization problem

max
0≤k1≤ν≤φ

(ν −k1 +J
µ

+J1−1/αΓ+
m ⋅ (ν −k1 +J)

1/α) = ν +J
µ

+J1−1/αΓ+
m ⋅ (ν +J)

1/α
. (50)
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(b) We next consider the case where n >n0. We proceed by maximizing both terms in Eq. (39).

(1) The first term involves a similar optimization problem to the one solved in part (a), hence

max
0≤k1≤...≤kJ≤ν

k1≤φ

⎛
⎝

max
Us
1

k2

∑
i=k1

X(1)r(i) + . . .+max
Us
J

n

∑
i=kJ

X(J)r(i)
⎞
⎠
≤ ν +J

µ
+J1−1/αΓ+

m ⋅ (ν +J)
1/α
.

Also, note that, by Assumption 1(a), we have

max
T∈Ua

n

∑
i=n0+1

Ti =
n−n0

λ
−γa (n−n0)

1/α
.

(2) Following the same bounding procedure as in the proof of Theorem 6, the second term in

Eq. (39) can be bounded by the following one-dimensional optimization problem

max
φ≤k1≤ν

((m1/αΓa +J1−1/αΓ+
m) ⋅ (ν −k1)

1/α −m(1−ρ)
λ

(ν −k1)) = max
0≤x≤ν−φ,x∈R

(β ⋅x1/α − δ ⋅x) .

Referring to the proof of Theorem 3, the optimal solution to the above expression is

max
0≤x≤ν−φ,x∈R

(β ⋅x1/α − δ ⋅x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β ⋅ (ν −φ)1/α − δ ⋅ (ν −γ) if ν −φ ≤ ( β

αδ
)α/(α−1)

α−1

αα/(α−1) ⋅
βα/(α−1)

δ1/(α−1) otherwise

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

Substituting β =m1/αΓa +J1−1/αΓ+
m and δ =m(1−ρ)/λ yields the desired result. ◻

A3. Proof of Proposition 1

Proof of Proposition 1. Consider job i. In an FCFS queue, jobs enter service in the order of their

arrival. Hence, job i enters service prior to all future incoming jobs. As a result, the system time of

job i depends on Ti = (T1, . . . ,Ti) and Xi = (X1, . . . ,Xi). For some realization of inter-arrival times

Ti and service times Xi+, we define the worst case system time in an FCFS queue as

Ŝi (Ti,Xi+) = max
Xi

Si (Ti,Xi)

s.t. (Xi,Xi+) ∈Usm.
(51)

We next prove our result using the technique of mathematical induction. We postulate and verify

the following inductive hypothesis: Under an FCFS policy, there exists a sequence of service times

X̂i that achieves the worst case system time Ŝi (Ti,Xi+), with X̂1 ≤ . . . ≤ X̂i, for any given T and

Xi+, such that (X̂i,Xi+) ∈Usm.



Author: Robust Transient Multi-Server Queues and Feedforward Networks

48 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Note that for i ≥ j > k, job k enters service before job j under an FCFS policy. Given the nonde-

creasing service times because of the inductive hypothesis, we have X̂j ≥ X̂k, implying that job j

cannot depart the queue before job k. As a result, under our inductive hypothesis, in an FCFS

queue with X̂1 ≤ . . . ≤ X̂i, no overtaking occurs until job i. By using Proposition 2 in Bandi et al.

(2012), we obtain

Ŝi (Ti,Xi+) =max
0≤k≤δ

⎛
⎝

δ

∑
j=k
Xs(j) −

i

∑
j=s(k)+1

Tj
⎞
⎠
,

where δ is such that i ∈Kδ.

(a) Initial Step: We first show that the inductive hypothesis holds for i = 1, . . . ,m. Since we

address the steady-state, we assume, without loss of generality, that the queue is initially

empty. Hence, the first m jobs enter service immediately with Si =Xi, for i ∈K0 = {1, . . . ,m}.

Applying Assumption 1(c) for I = {0}∪I ′, for all sets I ′ ⊆ {1, . . . , ν}, we obtain

Xi +∑
k∈I′

Xjk ≤
∣I ′∣+1

µ
+Γs( ∣I ′∣+1)

1/αs

.

This implies that

Xi ≤
∣I ′∣+1

µ
+Γs( ∣I ′∣+1)

1/αs

−∑
k∈I′

Xjk , ∀ I
′ ⊆ {1, . . . , ν}

≤ min
I′⊆{1,...,ν}

∣I ′∣+1

µ
+Γs( ∣I ′∣+1)

1/αs

−∑
k∈I′

Xjk .

Let I∗ be the minimizer. Thus, to maximize their system time for given (T,Xm+1, . . . ,Xn), it

suffices to set their service time to their highest value, i.e.,

X̂i =
∣I∗∣+1

µ
+Γs ( ∣I∗∣+1)

1/αs

− ∑
k∈I∗

Xjk , for all i = 1, . . . ,m.

This results in X̂1 = . . . = X̂m, which satisfies the inductive hypothesis for i = 1, . . . ,m.

(b) Inductive Step: We suppose that the inductive hypothesis is true until i =n−1 and prove it

for i =n. Let ` <n be the last job that was served by the server which is currently serving job

n. Then, the system time Sn is given by

Sn = max(C` −An,0)+Xn =max(S` +A` −An,0)+Xn
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= max
⎛
⎝
S` −

n

∑
j=`+1

Tj,0
⎞
⎠
+Xn =max

⎛
⎝
S` +Xn −

n

∑
j=`+1

Tj,Xn

⎞
⎠
.

For any given realization T, the worst case system time is bounded by

Ŝn (T) = max
X∈Usm

max
⎛
⎝
S` +Xn −

n

∑
j=`+1

Tj,Xn

⎞
⎠

≤ max
⎛
⎝

max
X∈Usm

S` +Xn −
n

∑
j=`+1

Tj,max
X∈Usm

Xn

⎞
⎠
. (52)

Let (X̃1, . . . , X̃n) be some sequence of service times that maximizes S` +Xn, i.e.,

max
X∈Usm

S` +Xn =S` (T`,X`)+ X̃n.

From the induction hypothesis, given a realization T and X`+, there a sequence of non -

decreasing service times X` that achieves the worst case system time, implying

S` (T`,X`) ≤ Ŝ` (T`,X`+) = max
0≤k≤γ

⎛
⎝

γ

∑
i=k

X̂s(i) −
`

∑
i=s(k)+1

Ti
⎞
⎠
,

where ` ∈Kδ. Hence, we bound the expression in Eq. (52) by

Ŝn (T) ≤ max{Ŝ` (T`,X`+)+ X̃n −
n

∑
i=`+1

Ti, max
Usm

Xn}

≤ max

⎧⎪⎪⎨⎪⎪⎩
max
0≤k≤γ

⎛
⎝

γ

∑
i=k

X̂s(i) −
`

∑
i=s(k)+1

Ti
⎞
⎠
+ X̃n −

n

∑
i=`+1

Ti, max
Usm

Xn

⎫⎪⎪⎬⎪⎪⎭
.

Rearranging the terms, and since (X̂i,X̃i+) ∈Usm, we obtain

Ŝn (T) ≤ max

⎧⎪⎪⎨⎪⎪⎩
max
0≤k≤γ

⎛
⎝

γ

∑
i=k

X̂s(i) + X̃n −
`

∑
i=s(k)+1

Ti −
n

∑
i=`+1

Ti
⎞
⎠
, max
Usm

Xn

⎫⎪⎪⎬⎪⎪⎭

≤ max

⎧⎪⎪⎨⎪⎪⎩
max
0≤k≤γ

⎛
⎝

max
Usm

{
γ

∑
i=k
Xs(i) +Xn}−

n

∑
i=s(k)+1

Ti
⎞
⎠
, max
Usm

Xn

⎫⎪⎪⎬⎪⎪⎭
. (53)

Recall that s(k) = `− (γ −k)m ∈Kk. Given that no overtaking occurrs until `, at the time job

n enters service, the jobs served by the remaining (m − 1) servers should have arrived after

job ` and before job n, i.e., they belong to the set I = {`+1, . . . ,n−1}. Since there are (m−1)

such jobs, we have

m−1 ≤ ∣I ∣ =n−1− (`+1)+1 =n− `−1,



Author: Robust Transient Multi-Server Queues and Feedforward Networks

50 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

yielding n − ` ≥m. Consider the partition K0,K1, . . . ,Kν that we considered in Assumption

1(c). Since two jobs j and k in the same set satisfy ∣j −k∣ <m, jobs n and ` belong to two

distinct sets in the partition K0,K1, . . . ,Kν . With ` ∈Kγ , and n ∈Kν , this implies ν ≥ γ +1. We

consider the following two cases.

(1) If ν = γ +1, then by Assumption 1(c),

max
Usm

{
γ

∑
i=0

Xs(i) +Xn} = ν +1

µ
+γm (ν+!)1/αs , (54)

max
Usm

{
ν

∑
i=0

Xs(i)} = ν +1

µ
+γm (ν +1)1/αs , (55)

max
Usm

{
γ

∑
i=k
Xs(i) +Xn} = ν −k+1

µ
+Γs (ν −k+1)1/αs , ∀k ≥ 1, (56)

max
Usm

{
ν

∑
i=k
Xs(i)} = ν −k+1

µ
+Γs (ν −k+1)1/αs , ∀k ≥ 1, (57)

where r(i) =n− (ν − i)m. Therefore, we have

max
Usm

{
γ

∑
i=k
Xs(i) +Xn} =max

Usm
{
ν

∑
i=k
Xs(i)} . (58)

Also, the index r(k) = n − (ν − k)m = n − (γ + 1 − k)m. Given that n ≥ ` +m, we have

r(k) ≥ `− (γ −k)m = s(k), which results in

n

∑
i=s(k)+1

Ti ≥
n

∑
i=r(k)+1

Ti, for all 0 ≤ k ≤ γ. (59)

Combining Eqs. (58) and (59), Eq. (53) becomes

Ŝn (T) ≤ max

⎧⎪⎪⎨⎪⎪⎩
max

0≤k≤ν−1

⎛
⎝

max
Usm

ν

∑
i=k
Xr(i) −

n

∑
i=r(k)+1

Ti
⎞
⎠
, max
Usm

Xn

⎫⎪⎪⎬⎪⎪⎭
. (60)

(2) If ν ≥ γ +2, then by Assumption 1(c),

max
Usm

{
γ

∑
i=k
Xs(i) +Xn} =max

Usm
{
γ+1

∑
i=k+1

Xr(i) +Xn} ≤max
Usm

{
ν

∑
i=k+1

Xr(i)} . (61)

Also, since s(k) ∈ Jk and r(k+1) ∈ Jk+1, we have s(k) ≤ r(k+1), which implies

n

∑
i=s(k)+1

Ti ≥
n

∑
i=r(k+1)+1

Ti, for all 0 ≤ k ≤ γ. (62)
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Applying the bounds in Eqs. (61) and (62), Eq. (53) becomes

Ŝn (T) ≤ max

⎧⎪⎪⎨⎪⎪⎩
max
0≤k≤γ

⎛
⎝

max
Usm

ν

∑
i=k+1

Xr(i) −
n

∑
i=r(k+1)+1

Ti
⎞
⎠
, max
Usm

Xn

⎫⎪⎪⎬⎪⎪⎭

= max

⎧⎪⎪⎨⎪⎪⎩
max

1≤k≤γ+1

⎛
⎝

max
Usm

ν

∑
i=k
Xr(i) −

n

∑
i=r(k)+1

Ti
⎞
⎠
, max
Usm

Xn

⎫⎪⎪⎬⎪⎪⎭
. (63)

Since ν ≥ γ +2, we can further bound Eq. (63) to obtain

Ŝn (T) ≤ max

⎧⎪⎪⎨⎪⎪⎩
max

0≤k≤ν−1

⎛
⎝

max
Usm

ν

∑
i=k
Xr(i) −

n

∑
i=r(k)+1

Ti
⎞
⎠
, max
Usm

Xn

⎫⎪⎪⎬⎪⎪⎭
. (64)

Combining the results in Eqs. (60) and (64) from cases (1) and (2), we conclude that the worst

case system time under FCFS is bounded by

Ŝn (T) ≤ max
0≤k≤ν

⎛
⎝

max
Usm

ν

∑
i=k
Xr(i) −

n

∑
i=r(k)+1

Ti
⎞
⎠
.

This bound is tight and is achieved under a scenario where the service times are chosen such

that Eqs. (54)–(54) are tight. This leads to

X̂jk =
1

µ
+Γm [(ν −k+1)1/αs − (ν −k)1/αs] , ∀jk ∈Kk and k = 1, . . . , ν (65)

X̂j0 = 1

µ
+γm (ν +1)1/αs −Γm (ν)1/αs , ∀j0 ∈K0 and

≤ 1

µ
+Γm [(ν −k+1)1/αs − (ν −k)1/αs] , ∀j0 ∈K0. (66)

Note that this optimal solution consists of nondecreasing service times, hence proving the

inductive hypothesis. ◻




